Rotation-Based Ensembles
نویسندگان
چکیده
A new method for ensemble generation is presented. It is based on grouping the attributes in di erent subgroups, and to apply, for each group, an axis rotation, using Principal Component Analysis. If the used method for the induction of the classi ers is not invariant to rotations in the data set, the generated classi er can be very different. Hence, once of the objectives aimed when generating ensembles is achieved, that the di erent classi ers were rather diverse. The majority of ensemble methods eliminate some information (e.g., instances or attributes) of the data set for obtaining this diversity. The proposed ensemble method transforms the data set in a way such as all the information is preserved. The experimental validation, using decision trees as base classi ers, is favorable to rotation based ensembles when comparing to Bagging, Random Forests and the most well-known version of Boosting.
منابع مشابه
Rotation-based ensembles of RBF networks
Ensemble methods allow to improve the accuracy of classification methods. This work considers the application of one of these methods, named Rotation-based, when the classifiers to combine are RBF Networks. This ensemble method, for each member of the ensemble, transforms the data set using a pseudo-random rotation of the axis. Then the classifier is constructed using this rotation data. The re...
متن کاملInvestigation of Property Valuation Models Based on Decision Tree Ensembles Built over Noised Data
The ensemble machine learning methods incorporating bagging, random subspace, random forest, and rotation forest employing decision trees, i.e. Pruned Model Trees, as base learning algorithms were developed in WEKA environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. T...
متن کاملRotation survival forest for right censored data
Recently, survival ensembles have found more and more applications in biological and medical research when censored time-to-event data are often confronted. In this research, we investigate the plausibility of extending a rotation forest, originally proposed for classification purpose, to survival analysis. Supported by the proper statistical analysis, we show that rotation survival forests are...
متن کاملBias and Variance of Rotation-Based Ensembles
In Machine Learning, ensembles are combination of classifiers. Their objective is to improve the accuracy. In previous works, we have presented a method for the generation of ensembles, named rotation-based. It transforms the training data set; it groups, randomly, the attributes in different subgroups, and applies, for each group, an axis rotation. If the used method for the induction of the c...
متن کاملAn Experimental Study on Rotation Forest Ensembles
Rotation Forest is a recently proposed method for building classifier ensembles using independently trained decision trees. It was found to be more accurate than bagging, AdaBoost and Random Forest ensembles across a collection of benchmark data sets. This paper carries out a lesion study on Rotation Forest in order to find out which of the parameters and the randomization heuristics are respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003